
Data Mining and Knowledge Discovery, 5, 305–335, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Knowledge Discovery in Grammatically
Analysed Corpora

SEAN WALLIS∗ s.wallis@ucl.ac.uk
University of HongKong, Department of English, HongKong

GERALD NELSON ganelson@hkucc.hk
Survey of English Usage, University College, London, UK

Editors: Fayyad, Mannila, RamaKrishnan

Received September 14, 1999; Revised June 9, 2000

Abstract. Collections of grammatically annotated texts (corpora), and in particular, parsed corpora, present
a challenge to current methods of analysis. Such corpora are large and highly structured heterogeneous data
sources. In this paper we briefly describe the parsed one-million word ICE-GB corpus, and the ICECUP query
system. We then consider the application of knowledge discovery in databases (KDD) to text corpora. Following
Cupit and Shadbolt (Proceedings 9th European Knowledge Acquisition Workshop, EKAW ’96; Berlin: Springer
Verlag, pp. 245–261, 1996), we argue that effective linguistic knowledge discovery must be based on a process of
redescription or, more precisely, abstraction, based on the research question to be investigated. Abstraction maps
relevant elements from the corpus to an abstract model of the research topic. This mapping may be implemented
using a grammatical query representation such as ICECUP’s Fuzzy Tree Fragments (FTFs). Since this abstractive
process must be both experimental and expert-guided, ultimately a workbench is necessary to maintain, evaluate
and refine the abstract model. We conclude with a pilot study, employing our approach, into aspects of noun
phrase postmodifying clause structure. The data is analysed using the UNIT machine learning algorithm to search
for significant interactions between domain variables. We show that our results are commensurable with those
published in the linguistics literature, and discuss how the methodology may be improved.

Keywords: linguistics, grammar, structured datasets, Text Corpora, redescription, cyclic knowledge discovery

1. Introduction

Corpus linguistics attempts to gain linguistic knowledge through the analysis of collections
of samples of naturally-occurring texts and transcribed recordings. Corpora are composed
of selections of material, usually of a normalised extent, taken from a variety of written and
spoken genres. Material may be sampled over time, geography or language. Corpus texts
(henceforth we take ‘texts’ to include transcriptions) are usually annotated by augmenting

∗The UNIT machine learning tool was developed by the first author at the AI Group, University of Nottingham,
where it was supported by the REPAY project (BRITE/EURAM 4139). The first author was supported by UK
ESRC grant R000222598 to develop the FTF query system. The construction and annotation of the ICE-GB corpus
was supported by ESRC grant R000232077.



306 WALLIS AND NELSON

further levels of description that illustrate specific aspects of language production. In par-
ticular, it is common to provide some kind of grammatical annotation.

At a minimum, this consists of an individual grammatical classification for every lexical
item in the corpus, by labelling words with wordclass tags (noun, verb, etc.), possibly with
additional features (proper, singular, etc.). This process is relatively simple and can be
performed automatically by stochastic methods to around 95% accuracy (Brill, 1992). As
a result very large tagged corpora have been produced. For example, the British National
Corpus (BNC; Burnage and Dunlop, 1992) is a 100 million word tagged corpus of (largely
contemporary) British English. (See http://info.ox.ac.uk/bnc) By contrast, automatically
parsing natural unrestricted text will only have a partial success (Briscoe, 1996). In practice,
therefore, results must be checked, corrected and cross-checked by trained linguists.

Texts might also include prosodic, phonetic, dialogue or semantic annotation. Multilin-
gual translational corpora have been produced that include text translations. Depending on
the translation, an attempt at mapping between the two versions of the text may be made,
forming a further, intermediate layer of annotation. However, like parsing, adding each class
of annotation requires human expertise.

Annotated corpora are expensive to construct and relatively rare. Effective exploitation
is therefore a priority. The selection of material, corpus size, and choice of annotation
levels are determined by linguistic goals and perspectives. This implies that, for general
application, a broad selection of material and a detailed level of annotation is required.
Recently constructed corpora are beginning to address this requirement. The University of
Pennsylvania Treebank (UPenn Treebank, Marcus et al., 1993) is a grammatically parsed
corpus of around 2.5 million words of (mainly written) US English, while the British Com-
ponent of the International Corpus of English (ICE-GB, see Section 2 below) contains
one million words of spoken and written British English. Moreover, attention is now being
directed towards languages other than English. A workshop in 1999 (Abeille, 1999) dis-
cussed work in progress in producing parsed corpora of comparable size in seven further
languages.

Tagged corpora have been used to construct word lists for dictionaries and thesauri.
Techniques for studying these corpora have focused on counting frequencies and exemplifi-
cation (McEnery and Wilson, 1996). Parsed corpora, on the other hand, contain an analysis
of sentence structure in the form of a single unambiguous grammatical tree analysis for
every sentence in the corpus (see figure 1).

This paper addresses a new prospect that arises from the development of these detailed
parsed corpora (and the revolution of mass cheap computing power). How can linguists
exploit parsed corpora in order to carry out research into the way that language behaves in
‘real’ use? Moreover, what tools and techniques are appropriate? Can linguistic knowledge
be encoded in such a way as to effectively direct computational power? Can new linguistic
insights be gained through the application of search? Can this knowledge be shared, trans-
ferred and reproduced among a community of linguists in such a way as to promote debate
about theoretical principles underlying differing grammatical perspectives?

Linguistics has long been divided between corpus based and theory driven approaches.
However, in this paper we will argue that knowledge-guided analysis of parsed corpora can
act as a bridge between linguistic theory and corpus data. The challenge is to use the corpus



KNOWLEDGE DISCOVERY 307

Figure 1. Three levels of corpus description: corpus (left), text sequence (top right), and single unit (with
grammatical analysis, bottom right).

to evaluate, test, and generate hypotheses that are commensurable with those of traditional
structural linguistics.

Much of the impetus for constructing parsed corpora, particularly in the US, has been
to provide a realistic training set for automatically generalising (learning) parsing systems.
Corpora such as the UPenn Treebank are primarily used as training and benchmark resources
for parsing algorithms.

However, the construction of performance systems, such as learning parsers, does not
promise a shortcut to meaningful linguistic knowledge. In practice, such systems are eval-
uated by performance criteria rather than by the much more nebulous notion of ‘meaning’.
A ‘better’ parser is one that is judged to produce a more accurate parsed tree for each
sentence in a text. There is a trade-off here, due to the complexity of natural language and
the law of diminishing returns.1 Given the same background knowledge, the more accu-
rate an inductive parser, the less comprehensible its internal representation will tend to be.
Conversely, obtaining meaning requires first introducing background knowledge into the
generalisation process. In fact, the most successful parsers have been hybrid systems that
use a combination of expert-supplied rules and corpus-derived statistics.



308 WALLIS AND NELSON

In contrast with this ‘hard’, automated, approach to corpus linguistics, many linguists have
maintained an exploratory, investigative, ‘soft’ approach. Soft corpus linguistics requires
computation to select material from a corpus, but does not aim at autonomous discovery.
In this paper we describe the initiation of a new research programme: to apply knowledge
discovery in databases (KDD) to text corpora. Our approach, although involving significant
computation, does not remove the linguist from the discovery process. Rather, it aims to
empower linguists with the necessary computational support to investigate the strength of
theoretical claims and—using machine learning (ML) techinques—to permit the search for
new, linguistically meaningful results.

2. ICE-GB and ICECUP

The Survey of English Usage recently published a one-million word corpus of contemporary
British English, the British Component of the International Corpus of English (ICE-GB;
Greenbaum, 1996a, b). ICE-GB is part of the worldwide International Corpus of English
(ICE) project, which aims to collect and annotate corpora on identical lines for some 20
native varieties of English. Supplied to linguists with the corpus is ICECUP III (Wallis,
and Nelson, 2000; Nelson, Wallis, and Aarts, in press), a program that provides an inte-
grated platform for the exploration of parsed corpora.2 This provides a variety of query
systems, both sociolinguistic and grammatical, on a specialised corpus management sys-
tem (CMS) platform. Grammatical queries are expressed as Fuzzy Tree Fragments (FTFs),
which are described in detail in (Wallis and Nelson, 2000) and summarised in Section 3
below.

ICE-GB is unusual among parsed corpora in that it contains a majority (60%) of or-
thographically transcribed spoken English. The fundamental division in the principal sam-
pling variable, called ‘text category’, is spoken versus written, which is further subdivided
(figure 1). This classification hierarchy is augmented by a variety of sociolinguistic and
biographical data organised by text, subtext, and each speaker or author.

Sociolinguistic variables are secondary, however, to the sheer detail of the textual analysis.
ICE-GB contains 500 2,000-word texts and over 83,000 grammatically analysed text units.
The level of grammatical detail in ICE-GB is far in excess of the UPenn Treebank. In
grammatical terms, we obtain a complete parse for all sentences in the corpus, whilst
Marcus’ group use a skeleton parsing scheme (see Section 7.1). Analyses in ICE-GB have
been checked and cross-checked by linguists using ICECUP. We estimate that the entire
effort was of the order of 25 person years.3

Aside from the grammatical analysis, the corpus is annotated in other ways. In order to
consider them grammatically, transcriptions are first edited into approximate ‘sentences’,
or text units, marked by their speaker. Annotation indicates where speakers overlap one
another, correct themselves, or break off in mid-utterance. Written texts include mark-up
for typographic details and editorial (spelling) normalisations. Figure 1 illustrates these
three principal levels of description in ICE-GB and their realisation.

The corpus is fully indexed by atomic elements and sociolinguistic variables. In many
circumstances, the software can perform rapid queries by simply retrieving an index of all
matching cases. For complex structured queries, however, it is necessary to determine the



KNOWLEDGE DISCOVERY 309

correct relationship between components. Candidate text units must be identified, retrieved,
and matched by a proof method (Wallis and Nelson, 2000).

3. Fuzzy tree fragments

Fuzzy Tree Fragments (FTFs: Aarts, Nelson, and Wallis, 1998; Wallis and Nelson, 2000)
are a representation for structured grammatical queries.4 FTFs are generalised grammatical
subtrees representing a model of the grammatical structure sought, with only the essential
elements retained—a ‘wild-card’ model for grammar. The idea is fairly intuitive to linguists
while retaining a high degree of flexibility. Nodes and text unit elements may be approxi-
mately specified, as may relational links between elements, and unary structural properties
termed ‘edges’ (e.g., ‘x is the first child in a sequence’).

FTFs are diagrammatic representations: they make sense as drawings of partial trees
rather than as a set of logical predicates. Such diagrams have structural coherence, that is, it
is immediately apparent if an FTF is feasible and sufficient (grammatically and structurally).

Links are coded for adjacency, order and connectedness, and depicted so as to exploit
structural coherence. Thus, the parent:child relation in an FTF can be either immediately or
eventually adjacent, called ‘parent’ and ‘ancestor’ respectively, and coloured black or white.
On the other hand, the sibling child:child relation may be set to one of a number of options,
from ‘immediately following’ (depicted by a black directional arrow), through ‘before or
after’ (a white bi-directional arrow), to ‘unknown’ (no arrow). The latter is necessary if two
‘child’ nodes in an FTF are not necessarily siblings in the corpus tree. A full list of all links
and edges is provided in (Nelson, Wallis, and Aarts, in press).

The final benefit of the graphical approach is that, as we shall see (figure 3), it is relatively
easy to see the relationship between an FTF and trees in the corpus. This applies both to
matching and to abstraction (creating an FTF from an example in the corpus).

Parsed text units in a corpus may be considered as either (a) contiguous text with attached
grammatical annotation, or (b) banks of trees containing embedded text. FTFs can be used
to search for similar text sequences regardless of grammar, similar grammatical structure
regardless of text, or combinations of grammar and text.

The examples in figure 2 illustrate this point. In (2a), the nodes are immediately adjacent
and must appear in precisely this arrangement in a tree. No other information is specified.
Example (2b) expresses a “word, tag” sequence as an FTF. The two nodes on the right are
bound to the leaf position, so they directly annotate the text unit elements to their right.
The third node matches the root of the tree and is connected to the leaf nodes by eventual
‘ancestor’ links. There is no sibling relation between the leaves, but the text unit elements
are ordered by the black arrow on the right, which specifies that the second, unspecified,
word immediately follows “about” in the sentence.

All FTFs contain a focal point, which we currently define as a single node or set of sibling
nodes in the tree. The focal point allows us to determine independent cases. If we wish to
study direct object noun phrases (written ‘[OD, NP]’), for example, we can locate the focus
in the FTF on this node (indicated by the border on the leftmost node in figure 2a). ICECUP
employs the focal point to indicate the portion of text ‘covered by’ the FTF, and to organise
concordancing displays (Nelson, Wallis, and Aarts, in press).



310 WALLIS AND NELSON

(a)

(b)

Figure 2. FTFs for grammatical and textual queries. (a) Grammatical query for a type of direct object (OD) noun
phrase (NP).5 (b) Textual query for a word + tag sequence: “about” and a numeral.

Figure 3 indicates how the two FTFs match nodes in the text unit in figure 1. The
text-oriented FTF, “about <NUM>” (2b) matches the leaf nodes ‘[AVHD, ADV]’ and
‘[NPHD, NUM]’ in the centre of the figure. The tree-oriented FTF (figure 2a) matches the
four nodes in the middle. The focal point of the former encloses the two leaf nodes and
thus the lexical items “about” and “535”. The focal point of the latter encloses the entire
noun phrase (henceforth: NP), realised by “our prime text”. These foci are illustrated in the
lower portion of the window.

Note that an FTF may multiply-match the same tree (text unit) in a number of ways.
Firstly, an FTF may match distinct parts of the tree. For example, figure 3 contains three
noun phrases, so a search for all NPs would find three separate matches in this case. Secondly,
FTFs may match overlapping portions of the same tree. This is exacerbated by the ability to
specify inexact relationships between elements in an FTF. Finally, an FTF can include un-
ordered sibling and word relationships, so it may match the same set of nodes more than once.

The topological issue of distinguishing between matches leads to a more general onto-
logical question: what is an independent case in the corpus? A ‘case’ in a study of NPs, for
example, will necessarily be a fraction of a tree. Cases can overlap or subsume one another
(e.g., NPs within NPs). This presents a problem in statistical analysis, as strict sampling
assumptions of independence are weakened. We return to this problem in Section 4.3 below.

ICECUP permits a linguist to explore the parsed corpus quickly and—given the annota-
tion complexity—relatively intuitively. A ‘Wizard’ tool supports the abstraction of an FTF
from a tree in the corpus, a ‘find me something like that’ facility. The software employs
an exploratory methodology (Wallis, Nelson, and Aarts, 1999) based on the assumption



KNOWLEDGE DISCOVERY 311

Figure 3. Matching FTFs in figure 2 against a single tree.6

of incomplete prior user knowledge. Even experienced linguists cannot know, in advance,
every detail of the grammatical representation employed in a corpus, or how it is realised.

However, whilst investigations carried out by performing queries and examining results
may uncover results, the exploration process is heavily reliant on the researcher, and con-
sequently, is time consuming and limited. The mode of research is constrained by (a) the
necessity to specify each individual query, and (b) weak control over the process. These
exacerbate the effect of a priori biases. We argue that to fully linguistically exploit a corpus
one must provide a different kind of exploratory system, one that encompasses a mini
‘research programme’ (Lakatos, 1970) rather than a single research question.

4. Knowledge discovery in corpora

4.1. The 3A perspective on corpus linguistics

‘Soft’ linguistic research on text corpora (see Section 1) may be characterised as three
distinct stages, what we call the ‘3A perspective’ (Annotation—Abstraction—Analysis,
figure 4). Each of these stages represent a potential source of error between the original
text and the evaluation of hypotheses. Each is knowledge intensive and approximate, and
therefore cyclic.

Note that the statement that each process requires the introduction of further knowledge
entails that it is not possible to generate equivalent results through autonomous process-
ing. ‘Hard’ corpus linguistics is limited in principle because it eschews the acquisition of
expertise for algorithmic refinement.

Our current ICECUP software supports the first two stages. As we mentioned, it was
used to cross-check and correct the grammatical annotation in ICE-GB. Secondly, ICECUP



312 WALLIS AND NELSON

Figure 4. The 3A perspective: from text to hypothesis.

permits exploratory access to the annotated corpus, and offers a variety of query systems to
support abstraction. It also employs a propositional calculus to combine queries (Nelson,
Wallis, and Aarts, in press), so that a linguist can compare how a grammatical structure is
used in formal and informal writing, for example. However, comparison is primarily visual
rather than analytic.

Statistics, such as χ2 tests, may be applied to the results,7 but the principal analytic
limitation derives from the fact that ICECUP does not currently support the construction
and manipulation of an explicit domain model.

Section 5 describes a pilot experiment applying redescriptive knowledge discovery to a
corpus, exploiting the existing FTF query system. We employ a machine learning algorithm,
UNIT (Wallis, 1993; 1999b; see Section 5.4), which obtains hypotheses in the form of sound
independent rules and exploits hierarchical domain variable structure.8

4.2. A perspective for discovery

Knowledge Discovery in Databases (KDD) has emerged out of ML and other statistical
techniques to become an established discipline in its own right. ‘Machine learning’ itself
comprises a diverse set of computational techniques whose shared characteristic is that they
attempt to inductively establish trends and interactions in data. In a KDD context, the idea
is to employ learning systems to detect significant interactions that may require further
explanation and exploration. ML is not a substitute for a deep analysis, but a tool to identify
significant interactions. The main advantages of a statistically sound learning approach over
more traditional statistical methods are search depth and the consequent tendency to reduce
a priori researcher bias.

However, often a regular database is not supplied in the appropriate form to permit
theoretically interesting results to be obtained with an algorithm. Simply applying an ML



KNOWLEDGE DISCOVERY 313

algorithm to an existing database, pejoratively termed ‘data mining’, has had limited success
(Fayyad, 1997). Cupit and Shadbolt (1996) argue that this is because fields are characterised
by the requirements of data collection, whereas KDD is employed post-hoc, often for quite
distinct purposes. Related to this is the question of domain structure. Databases often in-
clude fields that are not strictly independent from one another. For example, in a medical
survey, if a patient is male, the question, have you ever been pregnant? is superfluous.
Blind application of a statistical method is then liable to detect these strong but trivial
interactions.

Effective learning, therefore, requires a database that is, at minimum, normalised by the
elimination of duplicate, dependent and irrelevant fields (Wallis, 1993). Cupit and Shadbolt
argue further, recommending that the data should be redescribed in terms of the research
question to be solved. Their CASTLE workbench permits records in a source database to
be mapped to cases in an abstract dataset, or domain model, defined by the requirements
of the research. This translation is defined in two parts: a set of domain variables, and, for
each variable and value, a mapping rule that specifies the conditions when this particular
value is defined. A deterministic translation process is then applied to obtain the domain
model, which may then be explored using ML and statistical methods. Analytic results may
be used to further refine the mapping, in a cyclic process.

Naturally, this approach is knowledge dependent. The results of analysis are dependent on
this domain characterisation. A principled knowledge acquisition (KA) process, therefore,
must be employed to guide the specification of variables and mapping rules.

4.3. The necessity of redescription in corpus-based analysis

Cupit and Shadbolt’s characterisation of KDD as being centred around research-oriented
redescription is central to ‘knowledge discovery in corpora’ (KDC). While in some domains,
simple ‘data mining’ is conceivable, in the case of text corpora (and, possibly, for other
‘heterogeneous’ databases), prior redescription is a necessity. Unlike the redescription of
a regular database, the process of mapping from a corpus to an abstract model determines
not only the representation of domain variables but also the sampling of cases. Thus it is
more precise to refer to ‘redescription’ as abstraction from corpus to model (figure 4).

Non-regular heterogeneous databases consist of long sequences of complex structure (in
our case, texts divided into grammatically annotated text units). They do not consist of
regular, easily sampled, independent cases. A key aspect of corpus data redescription is
the determination of case scope and interaction. Abstraction from a corpus must identify
‘cases’ in the source by considering aspects that explicitly deal with neighbouring elements:
prior or posterior nodes, for example. There are at least two aspects of this interaction.

a) Subsumption. For example, noun phrases that are nested in one another. Such cases can-
not be said to be strictly independent, due to their co-occurrence in language production.

b) Overlap. One consequence of (a) is that elements of a case may partially overlap with
elements of another case, or variables concerning neighbouring nodes may overlap. The
most important example of this is grammatical interaction (e.g., two conjoined clauses,
as in “I am and I am not” [ICE-GB: W1B-001 #059]).



314 WALLIS AND NELSON

We propose an initial method for determining cases for our grammatically oriented inves-
tigation, based around Fuzzy Tree Fragments and their foci. (Sections 5.2 and 5.3 describe
this process using real examples). We may deal with overlap statistically by first modelling
the relative independence of cases. This was not possible in our experiment, but it would
be preferable for investigations of less frequent phenomena.

Finally, observe that abstractive redescription is only one part of an ultimate KDC process
for linguistic research. We propose the construction of a ‘scientific workbench’ system
supporting a KDC cycle (figure 5) consisting of (i) exploration, (ii) abstraction, (iii) analysis,
including ML, and (iv) concretisation (re-application of results to the corpus). ICECUP
permits corpus exploration. The KDC cycle consists of three further stages. Abstraction
elicits the abstract linguistic model. Analysis applies computation to search this hypothesis
space for useful and significant hypotheses between variables in the abstract model. These
may then be evaluated by domain experts. A cycle encourages experts to critique their
own hypotheses about the subject of study through repeated ‘experiments’ (Kondopoulou,
1997).

We build on the perspective of Shadbolt and Cupit (1996) by stressing the importance
of a final step, concretisation. This is particularly important in linguistics because of the
necessity to draw attention to the highly interpreted nature of the data source. What they term

Figure 5. The KDC cycle (after Cupit & Shadbolt, 1996).



KNOWLEDGE DISCOVERY 315

the “sub conceptual database”—the linguistic model—must necessarily be abstracted from
the annotated text in the corpus in order to permit generalisation (figure 4). The annotation
should not simply be taken as given, as we commented in Section 4. Moreover, different
linguistic traditions impose distinct analyses on the same examples.

Therefore, in order to contrast automatically generated hypotheses with those in the
literature, we must aim to identify and extract cases in the corpus that support and contradict
these hypotheses. As we shall see, our pilot experiment is limited by the practical difficulty
of this final step. In the conclusions we discuss how concretisation could be supported more
effectively in an integrated workbench.

5. An experiment in KDC

We proposed the following experiment. We would ask an expert linguist to manually specify
a set of variables and mapping rules, and employ a batch process to extract the abstract model
from the corpus. Cases in this model would then be processed by the ML algorithm and the
results presented to the expert for discussion in the light of current linguistic theory.

Naturally, there would be a number of limits to such an experiment, the most important
being the aforementioned issue of weak concretisation.9 We used ICECUP after the fact to
locate examples by applying conjunctions of FTFs, but this is not the same as recovering
the specific examples that led to a particular rule being selected. Moreover, one could not
easily use the examination of these cases to cue the elicitation of new variables. This meant
that the representation could not easily be refined by the KDC cycle proposed in Section 4
and we would therefore not be able to study theory evolution in this context.

A final issue is the sampling method employed. We reduce the prior likelihood of case
interaction by employing subsampling. In some low-frequency investigations, this approach
would not be feasible, requiring us to exploit the maximum amount of information from
our corpus. We therefore chose a reasonably common structure to investigate: noun phrase
postmodification.

5.1. Postmodification in noun phrases

In this experiment, we focus on the choice between two types of noun phrase postmodifying
(NPPO) clauses, which we exemplify in Table 1. With certain restrictions, a choice is
available between these two types of postmodifying clause (Quirk, Greenbaum, Leech,
and Svartvik, 1985, p. 1263). More precisely, this choice is between a nonfinite (reduced)
relative clause (an -ing clause (1) or an -ed clause (2)) and a full relative clause in which
the relative pronoun (e.g., who or which) functions as the subject ((1a) and (2a)).

The purpose of this experiment is to examine the factors which influence this choice,
using the ICE-GB corpus as our dataset. In other words, we are looking for the rules, if any,
that predict the choice of one clause type over the other. ICE-GB yields 5,342 full relative
clauses in which the subject is a relative pronoun. This compares with 3,792 postmodifying
nonfinite clauses (1,370 -ing clauses, 2,422 -ed clauses).10

We divide the variables into two types, (i) internal, that is, variables relating to the
postmodifying clause itself, and (ii) external, that is, variables relating to the host clause,



316 WALLIS AND NELSON

Table 1. Two types of clauses that postmodify noun phrases.

Type 1: Nonfinite clause Type 2: Relative clause

(1) people living in Hawaii. (1a) people who live in Hawaii

(2) the book published in London (2a) the book which was published in London

i.e., the clause containing the NP. We hypothesize that among the internal variables, the
transitivity of the verb will be an important factor (see Table 2). In particular, if the verb is
copular, then the postmodifying clause will most likely be relative. This is because the most
common copular verb, be, can not normally occur in postmodifying nonfinite clauses:

the man who is the president ∼∗ the man being the president

However, with other, less common copular verbs, the choice is available:

the athlete who is lying second ∼ the athlete lying second

The external variables have been selected to describe the syntactic environments in which
the postmodified NPs occur. Among the external variables, we expect that the function of
the NP will be significant. In particular, if the NP is the subject of the host clause, we would
expect to find a nonfinite postmodifying clause, rather than a relative clause, when a choice
is available. Subject NPs tend to be less complex than NPs in other positions (De Haan,
1986). Since nonfinite postmodifiers are more compact than their relative counterparts, they
would be the obvious choice when they occur in subject NPs.

All the variables considered in this first pass are summarised in Table 2.

5.2. Declaring domain variables

In order to extract examples of NPPO clauses, we employ Fuzzy Tree Fragments. First,
we use FTFs to determine the set of matching cases. Second, we define a set of relevant
discrete variables and employ FTFs to specify the instantiation of these variables.

UNIT permits discrete variables to include acyclic hierarchical laddering, i.e., typolog-
ical hierarchies where subvalues are mutually exclusive. Thus, in figure 6, the variable ‘VP
transitivity’ simply picks up the transitivity feature in the verb phrase in the postmodifying
clause. If there is no verb phrase in this position, the variable will be undefined. If there is
more than one (probably an error), then the last match is taken.

In the ‘form’ variable, in order to determine ‘relative form NPPOs’ the identifying ‘rela-
tive’ feature must be specified in a subject NP that has a pronoun head. The representation
does not rule out the ‘ed participle’ or ‘ing participle’ features. It would be an error if both
cases matched.

These FTFs are used to collect information from within and below the focus node—what
we might call ‘internal’ variables because they are internal to the clause under investigation.
It must also be possible to use FTFs to obtain ‘external’ information from siblings and



KNOWLEDGE DISCOVERY 317

Table 2. Variables and values specifying the domain model (in the first pass).

Variable Value Explanation

Form Relative, nonfinite

VP transitivity intransitive (intr) intransitive = no verb complement (e.g., David spoke)
copular (cop) copular = subject complement present (David is ill)
transitive: monotransitive = only direct object present (We met

David)
monotransitive (montr) ditransitive = indirect object and direct object present
ditransitive (ditr) (We told David the news)
dimonotransitive (dimontr) dimonotransitive = only ind. object present (We told
complex transitive(cxtr) David)
trans (trans) complex transitive = direct object and object

complement present (It made David angry)
trans = complement is direct object plus nonfinite
clause (We asked David to leave)

Subordination complex, simple complex = clause contains a subord. clause
simple = contains no subordination

Verb be, other verb is any form of be, or other verb

Other NPPO? yes, no presence or absence of any other NP postmodifier

NP function subject, prepositional The function of the NP in the host clause
complement, subject
complement, object (direct,
indirect), adverbial, other

Constituent between present, absent, NPPO presence or absence of any constituent between the
NP head and the NPPO

Host clause form finite, nonfinite, other finite = main verb has tense (past/present)
nonfinite = main verb has no tense

Host clause VP intransitive, copular, intransitive = verb complement absent
transitivity transitive (mono-, di-, transitive = verb complement present (see above)

dimono-, complex, trans.) copular = subject complement present

NPHD number singular, plural NP head is singular or plural

NPHD realisation noun, pronoun, nominal NP head is noun, pronoun, etc.
adjective, numeral, proform

NPPRs? yes, no presence or absence of any premodifier

Text category spoken (..) written (..) sampling variable, see figure 1

above this node. For example, we include variables to determine if there are any other
postmodifying clauses, any premodifying clauses in the NP, the realisation of the noun
phrase head (e.g., noun, pronoun, etc.) and its number (figure 7).

Most of our FTFs use fixed, rather than ‘fuzzy’, relationships between elements. However,
sometimes it is necessary to specify nodes that cannot be located deterministically. For
example, in order to determine whether another NPPO clause is present in the same NP,
we specify that it could occur before or after the focus NPPO clause. A more significant
problem occurs if not only do we wish to detect the presence of a node at some unspecified
distance but form a decision on the basis of that node.



318 WALLIS AND NELSON

Figure 6. Defining a case, and simple domain variables with mapping rules.

We wish to determine the form of the ‘host clause’ of the NPPO clause, and the transitivity
of the verb phrase within it. The host clause is defined as the closest ancestor clause.
However, FTFs do not contain a ‘closest ancestor’ link, because this contradicts the notion
of a declarative representation. Even if they did, we would have to ensure a strict ordering
on evaluation, in other words, guarantee that we first, identify the nearest host clause, and
second, determine nodes relative to it.

However, although FTFs are declarative, the mapping process itself is procedural. Figure 7
illustrates the principle. We declare an FTF for the domain variable. This defines the scope
of the variable. This FTF employs an ‘ancestor’ relation between the case node and the
host clause. (We ensure that the closest clause is chosen in preference to the furthest). We
also include a secondary focus point, causing the focus to ‘shift’ to another node in the
corpus tree. The mapping rules for the values below this point are then evaluated against
this node. This guarantees a single unambiguous decision based on the closest node to the
NPPO clause.



KNOWLEDGE DISCOVERY 319

Figure 7. Defining complex external variables.

We define 13 initial variables (Table 2), including the sociolinguistic ‘text category’
hierarchical variable. ICE-GB uses the TOSCA/ICE analysis of transitivity (Greenbaum,
1996a), which distinguishes between a variety of subtypes (monotransitive, ditransitive,
dimonotransitive, etc.). There is no unanimous agreement in the literature about the most
appropriate level of description. As UNIT can exploit a hierarchical variable typology,
we opt to introduce a broader ‘transitive’ group which brackets subtypes together, which
we distinguish from intransitive and copular types. We group direct and indirect objects
similarly.

5.3. Redescription in action: abstracting the domain model

We generate our domain model by applying these FTF mapping rules to the corpus. Each
relative or nonfinite NPPO case is identified, and the set is subsampled by a random criterion.

Each case in the corpus generates a corresponding case in the abstract model, expressed
as a tuple of attribute-value pairs. A decision procedure for each variable is applied in



320 WALLIS AND NELSON

turn. This determines the value of the variable by hierarchical descent, testing to see if the
mapping rule (disjunctive sets of FTFs) for each value matches the tree at the same point
as the case focus.

Figure 8 demonstrates this process. FTFs for VP transitivity are applied to the same tree
as the FTF for ‘form = nonfinite’. We determine that the VP in question is monotransitive.
We then proceed to the next variable, ‘subordination’. If the postmodifying clause contains
another clause, it is complex. Here, the absence of a match determines that it is marked as
‘simple’. Figure 8 illustrates other relevant nodes and information that may be extracted.

If no match is found for an FTF under a variable then it is left undefined. The last variable
is the sociolinguistic ‘text category’, where the value is simply copied from the corpus. The
result is a large regular database table, in the first pass consisting of 4,579 cases from a 50%
sampling rate.

5.4. Analysing the domain model

The UNIT machine learning algorithm was used to explore this dataset, searching for rules
predicting the variable ‘form’. UNIT (University of Nottingham Induction Tool: Wallis,
1993; 1999) is a general-to-specific similarity-based learning (SBL) algorithm similar to

Figure 8. Using FTFs to identify a case and extract its variables. FTFs for ‘form = nonfinite’ and ‘VP transitivity
= monotransitive’ have been applied.



KNOWLEDGE DISCOVERY 321

CN2 (Clark and Niblett, 1989), which employs a top-down ‘beam search’ that can be pruned
using a variety of methods.

For our purposes, UNIT has a number of features that are useful for knowledge discovery.
These include: a flexible maximisation function, options for exhaustive parallel search and
statistically sound search, and the exploitation of given hierarchical structure in target
and source variables. UNIT generates production rules, either as a strictly independent
‘unordered’ rule set or as an ordered ‘decision list’.

Each rule is evaluated according to a maximisation function, utility, and tested for sig-
nificance according to its distribution over the target concept. For example, the following
rule (from Appendix 2) has 174 supporting and 61 counter examples. It therefore has a
Laplace accuracy (Niblett and Bratko, 1987) of 74%. However, it has a coverage of only
5% (174 + 61 out of the 4,434 cases where ‘form’ was defined).

independent rule for FORM +ve −ve cov fit acc utility

IF NP FUNCTION = SUBJECT COMP AND 174 61 0.053 0.066 0.737 0.569
NPPRS = NO THEN

FORM = RELATIVE

In this experiment, utility is mostly based on Laplace rule accuracy, but with smaller
components of coverage (the applicability of the rule) and fitness (the accuracy of the
inverse). Formally, we use UNIT to search for rules that hold

utility = coverage0.07 × fitness0.03 × accuracy0.90
L > 0.5.

This function permits the tradeoff of these different measures against one another, so a more
general rule with medium accuracy may be judged to be more salient than a rule with higher
accuracy but of very low coverage. The exponents bias utility so that, for example, accuracy
is prioritised over coverage.

UNIT employs a hierarchical generalisation of the log-likelihood statistic (Haberman,
1978), which is χ2 distributed, to test rules for significance. This determines if the con-
ditional part of the rule (the left hand side of the ‘THEN’) significantly alters the dis-
tribution over the variable we are attempting to investigate (in this case, ‘form’). We
test for significance (a) to determine the statistical viability of a single rule, and (b)
to determine if each successive refinement of the rule significantly affects the conse-
quent. Thus, for example, the discovery of the rule above tells us (i) the rule itself is
significant (in terms of significantly altering the distribution of cases over ‘form’ at a
p > 0.95 level), (ii) a simpler rule consisting of only one of the preconditions is signifi-
cant at the same level, and (iii) the rule above is significantly different from this simpler
rule.

Employing significance in this way is more strict than is typical in machine learning.11

UNIT also searches the space of possible rules differently. Decision tree algorithms (e.g.,
C4.5; Quinlan, 1993) employ a ‘divide and cover’ strategy that constructs a tree by repeated



322 WALLIS AND NELSON

partitioning of the target concept. The choice of initial partition and condition determines
the context of future tree elaboration. Hence, these structures are often difficult to interpret
(Michie, 1986), even when paths are converted into rules.12 On the other hand, decision
list, or ‘ordered rule’, algorithms (e.g., CN2; Clark and Niblett, 1989) attempt to find a
single ‘best’ rule predicting a target concept and then partition the target according to those
covered, again, performing a shift of origin. These structures also tend to be opaque (see
Section 6.4).

UNIT offers an unordered rule set algorithm (Wallis, 1999b) that searches for all rules in
parallel across the entire training set. The resulting rule set is thoroughly ‘decomposable’,
i.e., a rule can be considered in isolation from all others. An apparent disadvantage to this
approach is the presence of a large amount of ‘redundancy’ in the rule set. This means that
there may be many different rules covering the same set of cases (and entailing the same
result). Note that such redundancy can be very useful in knowledge discovery, however:
two syntactically dissimilar rules correlating with a particular phenomenon are putative
alternative explanations. It is up to researchers to interpret these results and defend their
interpretations.

This class of SBL algorithms generates candidates through incremental specialisation,
that is, by taking a candidate rule and adding new conjunctive preconditions or refining
existing ones. Rules that fulfill certain criteria (e.g., an increasing maximisation function)
survive to the next round where they are specialised again. Since the set of candidates at any
stage can grow exponentially, it is common to employ competitive pruning (i.e., any method
where the presence of one rule candidate excludes another, such as, a limited number of
candidates).

In our experiment, we prune the search space by the requirement (a) that the utility function
must increase and (b) that each specialisation step must significantly alter the distribution
over the consequent. This ‘semi-exhaustive’ search produces a rule set where rules are not
merely unordered, but where the absence of an expected rule can be highly informative. We
suspect that the latter could be particularly useful in driving further evolution of the domain
model.

6. Results and discussion

6.1. Linguistic analysis

We applied UNIT to identify independent rules predicting the primary variable, ‘form’,
from the other domain variables, obtaining the rule list in Appendix 1. We initially applied
two kinds of search: a standard one that ‘evolved’ hierarchical preconditions over each pass
and another that exhaustively searched these variables. This allows us to avoid the implicit
danger in ‘laddering up’ in preconditions, namely that superordinates in a putative hierarchy
cause the search to be pruned prematurely (superordinate values must significantly affect
the distribution of cases across the target concept before any subordinates are considered
and a subordinate child must significantly differ from its parent).

For convenience, we divided the rules according to the domain variable type. The first
set of rules relates to the transitivity of the postmodifying clause.



KNOWLEDGE DISCOVERY 323

independent rules for FORM +ve −ve cov fit acc utility

IF VP TRANSITIVITY = COP THEN FORM 838 28 0.189 0.314 0.967 0.832
= RELATIVE

IF VP TRANSITIVITY = DIMONTR THEN FORM 183 9 0.042 0.069 0.948 0.703
= RELATIVE

IF VP TRANSITIVITY = TRANS THEN FORM 250 27 0.060 0.094 0.900 0.694
= RELATIVE

IF VP TRANSITIVITY = DITR THEN FORM 211 18 0.050 0.079 0.918 0.694
= RELATIVE

IF VP TRANSITIVITY = INTR THEN FORM 660 302 0.210 0.247 0.686 0.612
= RELATIVE

As we predicted in Section 5.1, the results indicate an interaction between transitivity and
the form of the postmodifying clause. The first rule predicts a strong correlation between
a copular verb and a relative clause, or, conversely, that nonfinite postmodifying clauses
are unlikely to contain a copular verb. In fact, the corpus yields only 41 instances of a
postmodifying clause in which the verb is copular. Many of these are fixed expressions, as
in (a) and (b), or are otherwise syntactically distinctive (c). The codes refer to their location
in ICE-GB.

a) For some this so-called age of plunder is a dream come true[S2B-023 #003].
b) So we won’t use that for the time being[S1A-045 #176].
c) Anyway enough being poetic[W1B-006 #022].

With the possible exception of (a), it would be difficult to think of a corresponding relative
clause, so, in effect, no choice is available between our two postmodifying clause types.
The first rule correctly predicts the fact that nonfinite postmodifying clauses with a copular
verb are rare.

The other rules relating transitivity to clause type are less strong, and more difficult to
interpret, not least because the transitivity values are mutually exclusive. The second set of
rules relates text category to clause type, as shown below:

independent rules for FORM +ve −ve cov fit acc utility

IF TEXT CATEGORY = “DIALOGUE” THEN FORM 721 253 0.213 0.270 0.740 0.657
= RELATIVE

IF TEXT CATEGORY = “SPOKEN” THEN FORM 1551 771 0.507 0.581 0.668 0.652
= RELATIVE

IF TEXT CATEGORY = “PUBLIC” THEN FORM 436 156 0.129 0.163 0.736 0.622
= RELATIVE

IF TEXT CATEGORY = “DIRECT CONVERSATIONS” 262 85 0.076 0.098 0.754 0.603
THEN FORM = RELATIVE

IF TEXT CATEGORY = “PRIVATE” THEN FORM 285 97 0.083 0.107 0.745 0.602
= RELATIVE



324 WALLIS AND NELSON

The text categories are arranged hierarchically, and the rules reflect this to some extent. The
hierarchy of relevant text categories is shown at the left of figure 1. The most general rule
predicts a correlation between relative clauses and spoken texts, while the following rule
predicts the converse:

independent rule for FORM +ve −ve cov fit acc utility

IF TEXT CATEGORY = “WRITTEN” THEN FORM 1139 1118 0.493 0.596 0.505 0.507
= NONFINITE

Taken together, these two groups of rules constitute the clearest linguistic results of this
experiment. Briefly, they predict that relative clauses will typically occur in speech, and that
nonfinite modifying clauses will typically occur in writing. This confirms earlier findings
by Biber (1988), who found that postmodifying nonfinite clauses are much more common
in writing than in speech. Using the London–Oslo–Bergen (LOB) corpus as his dataset,
Biber found 4.3 instances per 1,000 words in writing, compared with 1.9 per 1,000 words
in speech.13 In ICE-GB the corresponding figures are 4.3 in writing and 2.4 in speech.

The other text category rules serve to refine this general result, namely, that relative clauses
will more often be selected in speech. They indicate that while this is generally true, it is
more precisely in dialogues—both public and private—that this is the case. Interestingly,
no rule is produced to predict the form in monologues. This suggests that the significant
contrast is between dialogue and writing, not between speech and writing. Among the
dialogues, only the category of direct conversations generates a rule predicting form. This
may be explained by the preponderence of conversations in the corpus: 90 of the 300 spoken
texts are conversations.

Very few rules predict the nonfinite option. In the broadest terms, this means that nonfinite
postmodifiers are difficult to predict. They are relatively rare, and apart from saying that
they typically occur in writing, the rules do not strongly predict any other major factor. This
suggests that other variables need to be examined, though it is likely that these are ones
which have not been encoded in the corpus. That is to say, the major influences affecting
the choice of a nonfinite postmodifier may not be syntactic at all. Other factors, such as the
formality of the texts, and their information content, may also be contributing factors.

6.2. Developing the analysis

Since we discovered that ‘all transitives’ was not a good predictor for form, we decided to
remove this intermediate node in both transitivity variables (VP and host clause VP). This
ensures that leaf values are considered in the evaluation, and removes any advantage of
exhaustively searching these variables.

We observed that transitivity in general does not have a major effect on form, although
subtypes of transitivity do. ICE-GB follows Quirk, et al. (1985) in explicitly representing
subtypes of ‘transitive’, although many corpora (such as the BNC) do not.

Following some discussion, we proposed to ladder the ‘form’ variable down under ‘nonfi-
nite’ (figure 9), obtaining a simple hierarchical variable with two new leaves, ‘ing participle’



KNOWLEDGE DISCOVERY 325

Figure 9. Laddering down on the target concept.

and ‘ed participle’. (Laddering down is feasible if the domain model may be resampled). We
also introduced a number of additional variables, such as ‘speaker age’. After resampling
and reanalysis, we obtained the unordered rules listed in Appendix 2.

6.3. Further linguistic analysis

If we return to the question of transitivity (Section 6.1 above), it is interesting that all
the transitivity types generate a rule predicting a relative clause, with the exception of
monotransitive and complex transitive. This is not surprising when we consider that over
64% of the nonfinite clauses are -ed clauses. Clauses of this type are passive, and the passive
voice precludes a copular or an intransitive verb. Returning to the corpus data, we observe
that 85% of -ed clauses have a monotransitive verb, while 13% have a complex transitive
verb. These transitivity types, therefore, are predictors of a nonfinite clause, but only if we
distinguish between the two subtypes, -ed clauses and -ing clauses. When we make this
distinction, we obtain the following rule.

independent rule for FORM +ve −ve cov fit acc utility

IF FORM = NONFINITE AND VP TRANSITIVITY 281 8 0.065 0.436 0.971 0.933
= INTR THEN FORM = INGP

This rule correctly predicts that an intransitive verb indicates an -ing clause, rather than an
-ed clause. As we would expect, we also obtain a rule which states the converse of this:

indpendent rule for FORM +ve −ve cov fit acc utility

IF FORM = NONFINITE AND VP TRANSITIVITY 1039 333 0.307 0.858 0.757 0.710
= MONTR THEN FROM = EDP

The following rule is a refinement of this one, with a higher degree of accuracy:

indpendent rule for FORM +ve −ve cov fit acc utility

IF FORM = NONFINITE AND VP TRANSITIVITY 982 285 0.283 0.811 0.775 0.719
= MONTR AND SUBORDINATION = SIMPLE
THEN FORM = EDP

According to this rule, the correlation between a monotransitive verb and an -ed clause is
even stronger if the clause contains no subordination (‘subordination = simple’). Returning
to the corpus data, it becomes clear that many of the -ed clauses are quite short and simple,



326 WALLIS AND NELSON

often consisting of a monotransitive verb alone (“the university concerned”, “the people
involved”), or of a monotransitive verb followed by a by-agent phrase (“the role played by
middle management”). In all of these cases, the -ed clause contains no subordination. This
is in keeping with nonfinite postmodifying clauses generally, which are more compact and
shorter than their relative clause equivalents. While this is common knowledge in grammar,
the rule above adds a very useful refinement, by stating that the most compact of all the
nonfinite postmodifiers is the -ed type, and specifically, those containing a monotransitive
verb.

A number of other new rules were found which involved some of the new variables
(Appendix 2). However, these were difficult to explain without more effective concretisation.

6.4. Decision lists: comments

To compare the effectiveness of ordered and unordered sets of rules in knowledge discovery
we also presented our domain expert with sequences of ordered rules obtained by UNIT
using a cover-and-remove method. The following list was obtained from the first pass.

ordered rules for FORM +ve −ve cov fit acc utility

IF VP TRANSITIVITY = COP THEN FORM = RELATIVE 838 28 0.189 0.314 0.967 0.861
ELSE

IF VP TRANSITIVITY = INTR AND SUBORDINATION 54 5 0.016 0.029 0.902 0.665
= COMPLEX THEN FORM = RELATIVE

ELSE

IF VP TRANSITIVITY = TRANSITIVE AND 918 516 0.392 0.489 0.640 0.619
SUBORDINATION = SIMPLE AND TEXT CATEGORY = “WRITTEN” THEN FORM = NONFINITE

ELSE

IF SUBORDINATION = COMPLEX AND OTHER NPPO 51 12 0.028 0.040 0.800 0.619
= YES THEN FORM = RELATIVE

However, while our expert found that he could justify the first one or two rules (via
the unordered rules, where they also appeared), by the third rule, explanation became more
difficult. The decision list structure could not easily be decomposed into separate hypotheses,
either in order to test it against the corpus or to compare it with claims in the literature.

Secondly the structure specifically excludes alternative explanations for the variance
illustrated. Our expert markedly preferred independent rules and was able to apply them in
order to revise his experimental design.

7. Conclusions

7.1. Summary

We have demonstrated the applicability of KDD to corpus linguistics. In addition, we
have demonstrated that the question of representation is central. The data source is so



KNOWLEDGE DISCOVERY 327

complex, and the possible range of interactions so rich, that it is essential to first identify
and abstract potentially salient features in the form of a domain model. Our approach
differs from ‘learning’ within natural language processing (Briscoe, 1996; Fang, 1996) by
emphasising that meaningful results are to be obtained at a higher level of abstraction than the
corpus annotation itself. We share with the ‘Learning Language as Logic’ (LLL) proposals
of Muggleton (1998) the recognition that significant additional background knowledge is
necessary in order to obtain linguistically meaningful results. We also agree that research
should be goal directed, toward the solution of particular linguistic questions (e.g., past
tense in verbs, Mooney and Califf, 1995).

Where we primarily differ from Muggleton, et al. is in our perspective with respect
to the imperfection and partiality of our own background knowledge of language, and
the limitations of existing annotated corpora. The argument underlying the ‘3A perspec-
tive’ introduced in Section 4 is that it is not possible to make generalised statements
about naturally occurring samples of language unless one first collects such samples and
formalises the process of annotation and abstraction. Since this is necessarily a process
requiring linguistic intervention, as a starting point our representations must be
commensurable with current linguistic knowledge. The KDD bottleneck, therefore, is a
KA bottleneck.

Nor should we be tempted to overgeneralise from results obtained from highly linguisti-
cally restricted samples such as database queries (Mooney, 1997; Muggleton, 1998), com-
puter manuals (Black, Lafferty, and Roukos, 1992) or dictionary examples (Fang, 1996).
To put it mildly, unrestricted natural language is noisy. We would expect ‘crisp’ accu-
rate rules only in two situations. Either the corpus annotation was deterministically
introduced and our results reflected this, or we are mistakenly representing the same
domain relationship twice (e.g., relating the number of objects in a VP to the transitiv-
ity feature).

While LLL methods have had some good results on restricted domains, no amount of
logical power can compensate for an inadequate sample or an inadequate representation.
Moreover, if linguists cannot explain, interpret and justify networks of logical statements,
it is difficult to see the benefit of learning. On the other hand, linguists require ever more
powerful tools to apply their own knowledge to corpora. A workbench that they can use
unaided is therefore necessary.

Our proposals for the identification of cases and the instantiation of variables are, for the
most part, linguistically intuitive. Fuzzy Tree Fragments are becoming established within
corpus linguistics, and their declarative simplicity and familiarity appeals to linguists. Em-
ploying them in mapping rules to translate from the corpus to an abstract model is entirely
consistent with their current research usage. The main difference here, as compared to their
use in an exploration tool such as ICECUP, is in the degree of necessary formalisation in
the abstraction process, requiring the expert specification of explicit variables and mapping
rules. We would aim to ease this KA bottleneck by a number of techniques, including lad-
dering and structured interviewing (Corbridge et al., 1994). We may also exploit the corpus
representation to permit the system to suggest ways in which a variable may be completed.
The sampling process can also help identify if a variable is incompletely instantiated (for
example, if a domain variable doesn’t apply to a significant number of cases).



328 WALLIS AND NELSON

We discovered one problem with employing FTFs for abstraction. FTFs are declarative,
model-based representations, but we found it necessary to exploit a procedural approach in
order to abstract features of the host clause. Future work should include support for making
any necessary procedural knowledge explicit.

7.2. Data analysis with UNIT

Once a domain model was constructed, we were able to explore the viability of the UNIT
ML algorithm for data analysis in this domain.

UNIT (Wallis, 1999b) permits the comparative evaluation of many simple hypotheses in
the form of inference rules. As discussed in Section 5.4, UNIT can be used to obtain a list
of all rules that score higher than a particular threshold (ordered by the score), containing
a set of preconditions, each of which significantly contribute to the predictive power of
the rule. Moreover, we can exhaustively search a significance-limited subset of all possible
hypotheses within the domain model. The algorithm explores the space by starting with a
very general hypothesis and then proceeds to look for more specific ones.

There is thus both a positive, confirmational aspect of ML employed in this way (‘discov-
ery’), and a negative, disconfirmational aspect. We can show that other possible explanations
considered either do not apply, or are not as accurate predictors. This does not mean that
no explanations exist that subsume discovered hypotheses. However, it does mean that no
explanation considered in the abstract model suffices as effectively.

There are a number of possible reasons why hypotheses in the literature may not be
reflected in results. Variables that might have proved more predictive may be absent. Defined
variables may be limited by the inadequacies of the representation (either poor annotation
or poor translation from the annotation to the domain model). The corpus may be an
unrepresentative sample or cases may be too infrequent. Or, the literature may be inaccurate
and unrepresentative. The crucial point to note is that in order to address this question,
an investigator must re-examine the corpus, using the results as a guide. In other words,
adequate support for concretisation is essential. We discuss the implications of this in
Section 7.4.

Finally, we were also able to exploit hierarchical target concepts and refinement rules14 to
find rules that separately predicted the -ing and -ed participle subtypes of nonfinite clauses.

7.3. Exploiting hierarchical variables and unordered rules in discovery

The use of hierarchical variables, although initially unfamiliar, made sense to our domain
expert for cases such as transitivity, once a linguistic motivation was suggested. Their
use permitted us to experimentally evaluate, in the course of a research investigation, the
predictive value of levels of description of transitivity (an issue of debate in grammar). In
fact, we found that it was useful to discriminate between subclasses of transitivity in this
case, and therefore, we removed the laddering.

A second application came withthe hierarchical refinement of the target concept (figure 9).
We were able to find a cluster of cases containing a systematic set of attributes predict-
ing -ing and -ed clauses within the nonfinite cases. Although these were represented as



KNOWLEDGE DISCOVERY 329

refinement rules, this caused no particular problem of interpretation. We can therefore state
with some confidence that such hierarchical variables are indeed valuable and meaningful
within knowledge discovery.

Our expert was, however, much more marked in his preference for employing unordered
rules rather than decision lists. Decision lists presented no new information (clusters in this
domain appear to be relatively separable anyway) but were harder to interpret. The linguist
had to convert them into unordered rules first, which meant that many later rules were simply
discarded due to excessive complexity. Second, it was not possible to view alternative expla-
nations for the phenomena. Even if an exhaustive search was applied (subject to significant
improvement, say), lesser-scoring explanations were not available for comparison.

7.4. Future work

We employed a ‘3A’ perspective that concentrates on representational meaning. Provided
that the domain model was abstracted using linguistically meaningful terms, rules gener-
ated should be readily understandable. Here, the simplicity of production rules are a great
benefit. However, understanding what the terms employed in a rule mean is not the same as
understanding why the rule is supported. The principal limitation of our experiment was that
having obtained a rule it was difficult to concretise it by directly extracting both supporting
or counter examples for a particular rule, either at the abstract (domain model) or corpus
level. This had two consequences.

The immediate result was that the linguist could only obtain similar examples, imper-
fectly, from the corpus using ICECUP. ICECUP does not use FTF foci to specify a case
in the way we described. Due to subsampling, recovery could not guarantee the identifica-
tion of specific cases. With more complex rules (e.g., with multiple preconditions) this is
exacerbated.

The second consequence derives from the first: if concretisation is difficult, then it be-
comes harder to use the results to cue further acquisition. This is a method exploited by
repertory grid tools (Shaw and Gaines, 1987), for example, which use the results of analy-
sis to focus elicitation on undiscriminated clusters where new variables may be necessary.
In our case, poorly covered or unsatisfactorily explained cases could be used to propose
new FTFs and variables, or refine existing ones. Arguably, ICECUP already employs a
weakened form of this notion in its cyclic exploratory procedure (Wallis, Nelson, and
Aarts, 1999).

In summary, these limitations support the argument that a workbench is required to
integrate and control the overall process, and in particular, support concretisation.

We envisage an integrated approach to the visualisation of abstracted cases in the domain
model, in other words, so that each distinct example in the corpus (a sentence plus the focus
node locating the example within the sentence), can be viewed side-by-side. Second, all
cases covered by a rule, whether supporting or contradicting, should be accessible from the
rule. (Either the ML algorithm should pass this information back to the workbench or the
workbench should obtain it by re-applying rules to the linguistic model.) Third, there should
be methods for comparing how rules overlap with respect to these cases. This is to allow the
researcher to contrast competing hypotheses covering some or all of the same ground. At



330 WALLIS AND NELSON

present, the closest we can get to this is through ‘coverage maps’ (see Figures 10 and 11).
Finally, we believe that it would also be beneficial to evaluate expert-specified hypotheses
against the corpus to suggest explanations of why specified rules were not found by the
algorithm.

However, it is one thing to parameterise the architecture in this way, but any system must,
be usable by linguists unaided (like ICECUP). There is a real research question here.

Other weaknesses identified include the inability to test hypotheses directly (e.g., explic-
itly reproduce those in the literature and test them) and the lack of computational support
for the acquisition process from the corpus. Our sampling method was also potentially prob-
lematic, as we could not address the question of case interaction. All of these remain areas
of future research.

Despite this, our experiment clearly does support the applicability of knowledge discov-
ery techniques to corpus linguistics and, more specifically, the viability of our approach.
We have demonstrated the feasibility of knowledge-supported abstraction from annotated
corpora, permitting corpus analysis to be exploited in a directed fashion. Our ML compo-
nent exploited this abstracted database to make unexpected discoveries in linguistics. Our
results further indicate that a similar approach may be practicable in the analysis of other
structured non-homogeneous databases.

Appendix 1: Results of the first KDC pass

Table 3 summarises the rules generated in the first pass.
UNIT can also visualise rule distributions in the form of a ‘coverage map’ (figure 10).

Coverage maps (Wallis, 1999b) depict how each rule covers cases in the training set after
the set is subdivided by the target variable, allowing us to compare the coverage of different
rules. (You can think of this as a kind of multi-dimensional Venn diagram.) The vertical
expresses the spread of cases, whereas each vertical ‘strip’ corresponds to a rule. The shading
then indicates whether a case supports or contradicts the rule. In the first example, all rules
predict ‘form = relative’.

Figure 10. UNIT ‘coverage map’ of rule distribution for form, first section.



KNOWLEDGE DISCOVERY 331

Table 3. Rules generated by UNIT, first pass. Significant at the 0.05 level by χ2. The first section was computed
by exhaustively exploring hierarchical variables and holding utility ≥0.6. The second section lists additional rules
that were generated by evolving hierarchical preconditions and requiring utility ≥0.5.

Independent rules for FORM (first section) +ve −ve cov fit acc utility

IF VP TRANSITIVITY = COP THEN FORM = RELATIVE 838 28 0.189 0.314 0.967 0.832

IF VP TRANSITIVITY = DIMONTR THEN FORM = RELATIVE 183 9 0.042 0.069 0.948 0.703

IF VP TRANSITIVITY = TRANS THEN FORM = RELATIVE 250 27 0.060 0.094 0.900 0.694

IF VP TRANSITIVITY = DITR THEN FORM = RELATIVE 211 18 0.050 0.079 0.918 0.694

IF TEXT CATEGORY = “DIALOGUE” THEN FORM = RELATIVE 721 253 0.213 0.270 0.740 0.657

IF TEXT CATEGORY = “SPOKEN” THEN FORM = RELATIVE 1551 771 0.507 0.581 0.668 0.652

IF SUBORDINATION = COMPLEX THEN FORM = RELATIVE 409 137 0.119 0.153 0.748 0.627

IF TEXT CATEGORY = “PUBLIC” THEN FORM = RELATIVE 436 156 0.129 0.163 0.736 0.622

IF VP TRANSITIVITY = INTR THEN FORM = RELATIVE 660 302 0.210 0.247 0.686 0.612

IF TEXT CATEGORY = “DIRECT CONVERSATIONS” THEN FORM = RELATIVE 262 85 0.076 0.098 0.754 0.603

IF TEXT CATEGORY = “PRIVATE” THEN FORM = RELATIVE 285 97 0.083 0.107 0.745 0.602

Independent rules for FORM (second section)

IF VP TRANSITIVITY = DIMONTR AND TEXT CATEGORY = “WRITTEN” THEN 80 7 0.019 0.030 0.910 0.619

FORM = RELATIVE

IF VP TRANSITIVITY = DITR AND TEXT CATEGORY = “WRITTEN” THEN 93 12 0.023 0.035 0.879 0.611

FORM = RELATIVE

IF VP TRANSITIVITY = TRANS AND TEXT CATEGORY = “WRITTEN” THEN 109 18 0.028 0.041 0.853 0.606

FORM = RELATIVE

IF NPHD REALISATION = PRONOUN THEN FORM = RELATIVE 310 114 0.093 0.116 0.730 0.594

IF NPHD REALISATION = NOUN THEN FORM = RELATIVE 2306 1772 0.891 0.864 0.565 0.592

IF VP TRANSITIVITY = TRANSITIVE AND SUBORDINATION = SIMPLE AND 925 593 0.332 0.484 0.609 0.579

TEXT CATEGORY = “WRITTEN” THEN FORM = NONFINITE

IF VP TRANSITIVITY = TRANSITIVE AND TEXT CATEGORY = “WRITTEN” THEN 1001 721 0.376 0.524 0.581 0.562

FORM = NONFINITE

IF NP FUNCTION = OBJECT THEN FORM = RELATIVE 441 257 0.152 0.165 0.631 0.547

IF VP TRANSITIVITY = TRANSITIVE THEN FORM = NONFINITE 1598 1537 0.685 0.837 0.510 0.529

IF HOST CL VP TRANS = INTR THEN FORM = RELATIVE 689 558 0.272 0.258 0.552 0.513

IF TEXT CATEGORY = “WRITTEN” THEN FORM = NONFINITE 1139 1118 0.493 0.596 0.505 0.507

IF NP FUNCTION = DETACHED THEN FORM = RELATIVE 165 89 0.055 0.062 0.648 0.505

Appendix 2: Results of the second KDC pass

On the second pass, the target concept is hierarchically structured (see figure 9),
so refinement rules are permitted. This permits the analysis and discovery of variation
within the subdomain of nonfinite types and, moreover, the comparison of these results
with those for the general case. Rules obtained by UNIT are givenin Table 4.

Figure 11 illustrates the comparative distribution of these rules. This is a more complex
example because the target is now hierarchical. Rules predicting the new nonfinite subvalues
are shown in the lower right of the figure.



332 WALLIS AND NELSON

Table 4. Rules from second pass induction. Upper part: utility u > 0.6, lower: u > 0.5. The rules cover 88.9%
of ‘form’ with a mean 76.1% accuracy (total computation: 1,767 rule evaluations).

Independent rules for FORM +ve −ve cov fit acc utility

IF VP TRANSITIVITY = COP THEN FORM = RELATIVE 763 25 0.176 0.292 0.967 0.826

IF FORM = NONFINITE AND VP TRANSITIVITY = INTR THEN 281 8 0.065 0.436 0.971 0.777

FORM = INGP

IF FORM = NONFINITE AND VP TRANSITIVITY = MONTR AND 982 285 0.283 0.811 0.775 0.719

SUBORDINATION = SIMPLE THEN FORM = EDP

IF FORM = NONFINITE AND VP TRANSITIVITY = MONTR THEN 1039 333 0.307 0.858 0.757 0.710

FORM = EDP

IF VP TRANSITIVITY = DIMONTR THEN FORM = RELATIVE 179 8 0.042 0.068 0.950 0.704

IF VP TRANSITIVITY = TRANS AND SUBORDINATION = SIMPLE 173 8 0.040 0.066 0.949 0.701

THEN FORM = RELATIVE

IF VP TRANSITIVITY = DITR THEN FORM = RELATIVE 200 15 0.048 0.076 0.924 0.696

IF FORM = NONFINITE AND VP TRANSITIVITY = CXTR THEN 156 12 0.038 0.129 0.927 0.694

FORM = EDP

IF VP TRANSITIVITY = TRANS THEN FORM = RELATIVE 247 27 0.061 0.094 0.897 0.693

IF TEXT CATEGORY = “SPOKEN” THEN FORM = RELATIVE 1492 750 0.501 0.570 0.665 0.649

IF FORM = NONFINITE AND OTHER NPPO = NO AND 692 286 0.219 0.571 0.708 0.644

TEXT CATEGORY = “WRITTEN” THEN FORM = EDP

IF FORM = NONFINITE AND TEXT CATEGORY = “WRITTEN” 771 335 0.247 0.637 0.697 0.644

THEN FORM = EDP

IF SUBORDINATION = COMPLEX THEN FORM = RELATIVE 424 140 0.126 0.162 0.750 0.632

IF VP TRANSITIVITY = INTR THEN FORM = RELATIVE 672 289 0.215 0.257 0.699 0.624

IF NP FUNCTION = SUBJECT COMP AND 42 3 0.010 0.016 0.915 0.590

NPHD REALISATION = PRONOUN AND

NPPRS = NO THEN FORM = RELATIVE

IF SUBORDINATION = SIMPLE THEN FORM = RELATIVE 2193 1716 0.874 0.838 0.561 0.586

IF NPHD REALISATION = PRONOUN THEN 290 114 0.090 0.111 0.716 0.585

FORM = RELATIVE

IF NP FUNCTION = SUBJECT COMP AND NPPRS = NO THEN 174 61 0.053 0.066 0.737 0.569

FORM = RELATIVE

IF SPEAKER AGE = “46–65” THEN FORM = RELATIVE 1456 1131 0.578 0.556 0.563 0.564

IF VP TRANSITIVITY = MONTR AND 870 643 0.338 0.469 0.575 0.550

TEXT CATEGORY = “WRITTEN” THEN

FORM = NONFINITE

IF NP FUNCTION = DIRECT OBJECT THEN FORM = RELATIVE 430 255 0.153 0.164 0.627 0.546

IF NP FUNCTION = SUBJECT COMP THEN FORM = RELATIVE 238 120 0.080 0.091 0.663 0.538

IF NP FUNCTION = DETATCHED THEN FORM = RELATIVE 165 78 0.054 0.063 0.676 0.528

IF VP TRANSITIVITY = CXTR AND NPHD NUMBER = PLURAL 83 31 0.025 0.032 0.724 0.521

THEN FORM = RELATIVE

IF VP TRANSITIVITY = MONTR THEN FORM = NONFINITE 1372 1359 0.611 0.739 0.502 0.515

IF VP TRANSITIVITY = CXTR THEN FORM = RELATIVE 271 168 0.098 0.104 0.616 0.513

IF SPEAKER AGE = “66+” THEN FORM = RELATIVE 766 655 0.318 0.293 0.539 0.510

IF TEXT CATEGORY = “WRITTEN” THEN 1125 1106 0.499 0.430 0.504 0.502

FORM = RELATIVE



KNOWLEDGE DISCOVERY 333

Figure 11. Coverage map for postmodifying clause form (where u > 0.6).

Acknowledgments

This paper would not have been possible without the efforts of the many linguists who
constructed the ICE-GB corpus. Thanks are also due to Nigel Shadbolt, James Cupit,
Tom Lavelle, Bas Aarts and the anonymous referees for their useful comments on this
paper.

Notes

1. Parsers tend to asymptote in performance on unrestricted naturally occurring text at around 75% coverage and
70% accuracy (cf. Briscoe, 1996: the precise figures will vary according to the degree of sophistication and
detail in the parse). It is very difficult to raise the performance of parsers beyond this point. Natural language
is (a) highly ambiguous and (b) highly generative (new constructions keep appearing). Moreover, in order
to disambiguate the syntax of a particular utterance, aditional semantic and pragmatic knowledge is often
required.

2. More information about ICE and ICE-GB is available from http://www.ucl.ac.uk/english-usage/ice-gb/. The
ICECUP software is freely available from this site, together with a sample of 20,000 words of parsed speech
and writing from the ICE-GB corpus. The complete ICE-GB corpus used in this experiment is available on
CD-ROM at cost from the Survey of English Usage.

3. Most of the KA support for the correction process (Wallis and Nelson, 1997) was developed late in the project
lifecycle. Moreover, ICECUP was only available to support cross-sectional correction in the last year of an
eight year effort (Wallis, 1999a). Late developing query systems can be highly revealing of inconsistencies
and infelicities in the earlier analysis.

4. We refer to them as ‘fuzzy’ to encourage linguists to think about specifying inexact relationships and elements.
They are not “fuzzy” in the sense of fuzzy logic (Zadeh, 1965). Online information about FTFs, including the
methodology of simple experiments, is available at http://www.ucl.ac.uk/english-usage/ftfs.

5. The component nodes are as follows. A determiner phrase (DTP) followed by an adjective phrase (AJP) acting
as an NP premodifier (NPPR), followed by a noun phrase head (NPHD) realised by a noun (N). Figure 3
indicates an example in the corpus: our prime text.

6. Additional terms: PU = parse unit, CL = clause, VP = verb phrase, SU = subject, VB = verbal, MVB =
main verb, PRON = pronoun, DTCE = central determiner, ADJ = adjective, AJHD = adjective phrase head,
A = adverbial, AVP = adverb phrase, ADV = adverb, AVHD = adverb phrase head.



334 WALLIS AND NELSON

7. For examples see http://www.ucl.ac.uk/english-usage/ftfs/experiment.htm.
8. UNIT permits any variable (source or target) in the dataset to be described in the form of a discrete, acyclic

(set-subset) hierarchy of mutually exclusive terms. Examples of such variables are given in Table 2 and
figure 9. In addition, UNIT can detect refinement rules (see note 14) for a hierarchical target variable.

9. Like many similar algorithms, UNIT reports aggregate statistics but not the actual set of cases covered by
each rule (UNIT does have a graphical ‘coverage map’ facility—see Appendices—but this does not explicitly
identify cases). Abstraction generated a new dataset from the corpus but cases in this dataset were not related
to the corpus (recall also that a random 50% subsampling was used). Finally, ICECUP does not perform case
resolution in the same way as our abstractive process.

10. In this study, we exclude the third nonfinite type, infinitive, because the correspondence between the relative
clause and the nonfinite/reduced relative is less clear-cut. Unlike -ing and -ed clauses, infinitives permit
correspondence with relative clauses in which the pronoun is not always a subject. It may, for instance,
be an object: the man to see is Mr. Brown ∼the man who(m) you should see... (c.f. Quirk et al., 1985,
pp. 1265–6).

11. Similar proposals have been made by, for example, Wu (1995), with respect to Quinlan’s (1993) C4.5. ML is
usually characterised as employing heuristic rather than statistically-pruned search.

12. C4.5 can obtain independent rules from data using a postprocess called C4.5RULES. The results are non-
exhaustive due to C4.5’s divide and cover strategy (Quinlan, 1993). Whilst UNIT will offer multiple possible
explanations for a single phenomenon, C4.5RULES will tend to obtain a single ‘best’ explanation.

13. Collated from tables of mean frequency counts in Biber, 1986 (Appendix III, p 247), where -ing and -ed
postmodifying clauses are referred to as “WHIZ deletion” relatives.

14. A refinement rule is a rule that includes a more general value of the target concept in the precondition, e.g.,
‘IF FORM = NONFINITE AND VP TRANSITIVITY = INTR THEN FORM = INGP’. UNIT can exploit
hierarchical structuring in the target variable to generate refinement rules.

References

Aarts, B., Nelson, G., and Wallis, S.A. 1998. Using fuzzy tree fragments to explore English grammar. English
Today, 14:52–56.

Abeille (ed.) 1999. Journées ATALA sur les corpus annotés pour la syntaxe—Treebanks workshop, Paris: ATALA.
Biber, D. 1988. Variation across speech and writing. Cambridge: Cambridge University Press.
Brill, E. 1992. A simple rule-based template tagger. In Proc. 3rd International Conference on Applied Nat-

ural Language Processing, Trento, Italy. Association for Computational Linguistics, New Jersey, pp. 152–
155.

Briscoe, T. 1996. Robust Parsing. In Survey of The State of the Art in Human Language Technology
(on-line document), R.A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zoe (Eds.). http://cslu.cse.
ogi.edu/HLTsurvey, (+/ch3node9.html).

Burnage, G. and Dunlop, D. 1992. Encoding the British National Corpus. In English Language Corpora: Design,
Analysis and Exploitation, J. Aarts, P. de Haan, and N. Oostdijk (Eds.). Amsterdam: Rodopi.

Clark, P. and Niblett, T. 1989. The CN2 Induction Algorithm. Machine Learning, 3:263–283.
Corbridge, C., Rugg, G., Major, N.P., Shadbolt N.R., and Burton, A.M. 1994. Laddering: Technique and tool use

in knowledge acquisition. Knowledge Acquisition, 6:315–341.
Cupit, J. and Shadbolt, N.R. 1996. Knowledge discovery in databases: Exploiting knowledge level redescription.

In Advances in Knowledge Acquisition. Proc. 9th European Knowledge Acquisition Workshop, EKAW ’96,
N.R. Shadbolt, K. O’Hara, and G. Schreiber (Eds.). Berlin: Springer Verlag. pp. 245–261.

Fang, A.C. 1996. Automatically Generalising a Wide-Coverage Formal Grammar. In Synchronic Corpus Linguis-
tics, C. Percy, C. Meyer, and I. Lancashire (Eds.). Amsterdam and Atlanta: Rodopi, pp. 131–146.

Fayyad, U. 1997. Editorial. Data Mining and Knowledge Discovery, 1:5–10.
Greenbaum, S. (Ed.) 1996. Comparing English Worldwide: The International Corpus of English. Oxford:

Clarendon Press.
Haan, P. de. 1986. Exploring the Linguistic Database: Noun Phrase Complexity and Language Variation. In Corpus

Linguistics and Beyond, W. Meijs (Ed.). Amsterdam: Rodopi, pp. 151–165.



KNOWLEDGE DISCOVERY 335

Haberman, S.J. 1978. Analysis of Qualitative Data: Introductory Topics, Vol. 1, New York: Academic Press.
Huddleston, R. 1984. Introduction to the Grammar of English. Cambridge: Cambridge University Press.
Kondopoulou, P. 1997. Famine in Aigio: Analysing Memories of the Greek Famine. MA Dissertation, University

of East London.
Lakatos, I. 1981. History of Science and Its Rational Reconstructions. In Scientific Revolutions, Oxford Readings

in Philosophy, I. Hacking (Ed.) (1981). Oxford: OUP, pp. 107–127.
McEnery, A. and Wilson, A. 1996. Corpus Linguistics, Edinburgh: EUP.
Marcus, M., Kim, G., Marcinkiewicz, M.A., MacIntyre, R., Bies, M., Ferguson, M., Katz, K., and Schasberger,

B. 1994. The Penn Treebank: Annotating predicate argument structure. In Proc. Human Language Technology
Workshop. San Francisco: Morgan Kaufmann.

Mooney, R.J. 1997. Inductive logic programming for natural language processing. In Proc. 6th International
Workshop on Inductive Logic Programming, Berlin: Springer Verlag, pp. 3–21.

Mooney, R.J. and Califf, M.E. 1995. Induction of first order decision lists: Results on learning the past tense of
English verbs. Journal of Artificial Intelligence Research, 3:1–24.

Muggleton, S. 1998. Inductive logic programming: Issues, results and the LLL challenge (abstract). In Proc. 13th
European Conference on Artificial Intelligence, ECAI-98. Chichester: John Wiley. p. 697.

Michie, D. 1986. On Machine Intelligence (2nd ed.). Chichester: Ellis Horwood.
Nelson, G., Wallis, S.A., and Aarts, B. in press. Exploring Natural Language: The British Component of the

International Corpus of English. Amsterdam: John Benjamins.
Niblett, T. and Bratko, I. 1987. Learning decision rules in noisy domains. In Bramer, M.A. (Ed.). Research and

Development in Expert Systems, 3:25–34.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann.
Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. 1985. A Comprehensive Grammar of the English Language.

London: Longman.
Shaw, M. and Gaines, B. 1987. An interactive knowledge elicitation technique using personal construct technology.

In Knowledge Acquisition for Expert Systems: A Practical Handbook. A. Kidd (Ed.). New York: Plenum
Press.

Wallis, S.A. 1993. Machine learning with knowledge. In Proc. MLnet Workshop on Scientific Discovery 1993,
MLnet, pp. 123–131.

Wallis, S.A. and Nelson, G. 1997. Syntactic parsing as a knowledge acquisition problem. In E. Plaza and
R. Benjamins (Eds.). Knowledge Acquisition, Modeling and Management. Proc. 10th European Knowledge
Acquisition Workshop, EKAW ’97, Berlin: Springer Verlag. pp. 285–300.

Wallis, S.A., Aarts, B., and Nelson, G. 1999. Parsing in reverse—Exploring ICE-GB with Fuzzy Tree Fragments
and ICECUP. In Corpora Galore, Papers from 19th Int. Conf. on English Language Research on Computerised
Corpora, ICAME-98, J.M. Kirk (Ed.). Amsterdam: Rodopi, pp. 335–344.

Wallis, S.A. 1999a. Completing parsed corpora: From correction to evolution. In Abeille, 1999. pp. 7–12.
Wallis, S.A. 1999b. Machine Learning for Knowledge Discovery, PhD Thesis. University of Nottingham.
Wallis, S.A. and Nelson, G. 2000. Exploiting fuzzy tree fragments in the investigation of parsed corpora, Literary

and Linguistic Computing, 15:339–361.
Wu, X. 1995. Knowledge Acquisition from Databases. Norwood, NJ: Ablex.
Zadeh, L. 1965. Fuzzy sets. Information and Control, 8:338–353.


